Atomic view of the histidine environment stabilizing higher-pH conformations of pH-dependent proteins
نویسندگان
چکیده
External stimuli are powerful tools that naturally control protein assemblies and functions. For example, during viral entry and exit changes in pH are known to trigger large protein conformational changes. However, the molecular features stabilizing the higher pH structures remain unclear. Here we elucidate the conformational change of a self-assembling peptide that forms either small or large nanotubes dependent on the pH. The sub-angstrom high-pH peptide structure reveals a globular conformation stabilized through a strong histidine-serine H-bond and a tight histidine-aromatic packing. Lowering the pH induces histidine protonation, disrupts these interactions and triggers a large change to an extended β-sheet-based conformation. Re-visiting available structures of proteins with pH-dependent conformations reveals both histidine-containing aromatic pockets and histidine-serine proximity as key motifs in higher pH structures. The mechanism discovered in this study may thus be generally used by pH-dependent proteins and opens new prospects in the field of nanomaterials.
منابع مشابه
Molecular and Cellular Aspects of Rhabdovirus Entry
Rhabdoviruses enter the cell via the endocytic pathway and subsequently fuse with a cellular membrane within the acidic environment of the endosome. Both receptor recognition and membrane fusion are mediated by a single transmembrane viral glycoprotein (G). Fusion is triggered via a low-pH induced structural rearrangement. G is an atypical fusion protein as there is a pH-dependent equilibrium b...
متن کاملReduction potentials of Rieske clusters: importance of the coupling between oxidation state and histidine protonation state.
Rieske [2Fe-2S] clusters can be classified into two groups, depending on their reduction potentials. Typical high-potential Rieske proteins have pH-dependent reduction potentials between +350 and +150 mV at pH 7, and low-potential Rieske proteins have pH-independent potentials of around -150 mV at pH 7. The pH dependence of the former group is attributed to coupled deprotonation of the two hist...
متن کاملA STUDY OF ULTRASONIC ABSORPTION OF SOME AMINO ACIDS AND THEIR MIXTURES AT PHYSIOLOGICAL pH
In this paper, the ultrasonic absorption of amino acids was measured using a small cylindrical resonator at physiological pH and 25°C and a concentration of 0.1. M. The absorption of mixtures of some amino acids was also measured. In the case of cysteine-histidine, the absorption of mixtures is much larger (more than twice) than the summation of absorption of the individual amino acid. This...
متن کاملSingle molecule force spectroscopy reveals that electrostatic interactions affect the mechanical stability of proteins.
It is well known that electrostatic interactions play important roles in determining the thermodynamic stability of proteins. However, the investigation into the role of electrostatic interactions in mechanical unfolding of proteins has just begun. Here we used single molecule atomic force microscopy techniques to directly evaluate the effect of electrostatic interactions on the mechanical stab...
متن کاملDriving Calmodulin Protein towards Conformational Shift by Changing Ionization States of Select Residues
Proteins are complex systems made up of many conformational sub-states which are mainly determined by the folded structure. External factors such as solvent type, temperature, pH and ionic strength play a very important role in the conformations sampled by proteins. Here we study the conformational multiplicity of calmodulin (CaM) which is a protein that plays an important role in calcium signa...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2015